Sunday, July 7, 2024
HomeNanotechnologyRevolutionizing the feminine reproductive system analysis utilizing microfluidic chip platform | Journal...

Revolutionizing the feminine reproductive system analysis utilizing microfluidic chip platform | Journal of Nanobiotechnology


  • Ginsburg O. Manifesto for international girls’s well being. Nat Rev Clin Oncol. 2018;15:3–4.

    Article 
    PubMed 

    Google Scholar
     

  • Hesam AA, Taghipour L, Rasekhi S, Fallahi S, Hesam Z. Investigating the a number of facets of psychological well being in infertile girls. Int J Ment Well being Addict. 2017;15:928–32.

    Article 

    Google Scholar
     

  • Ramírez-González JA, Vaamonde-Lemos R, Cunha-Filho JS, Varghese AC, Swanson RJ. Overview of the feminine reproductive system. In: Vaamonde D, Du Plessis SS, Agarwal A, editors. Train and human copy: induced fertility problems and doable therapies. New York: Springer; 2016. p. 19–46.

    Chapter 

    Google Scholar
     

  • Farquhar CM, Bhattacharya S, Repping S, Mastenbroek S, Kamath MS, Marjoribanks J, Boivin J. Feminine subfertility. Nat Rev Dis Primers. 2019;5:7.

    Article 
    PubMed 

    Google Scholar
     

  • Nicoloro-SantaBarbara JM, Lobel M, Bocca S, Stelling JR, Pastore LM. Psychological and emotional concomitants of infertility analysis in girls with diminished ovarian reserve or anatomical reason for infertility. Fertil Steril. 2017;108:161–7.

    Article 
    PubMed 

    Google Scholar
     

  • La Rosa VL, Shah M, Kahramanoglu I, Cerentini TM, Ciebiera M, Lin L-T, Dirnfeld M, Minona P, Tesarik J. High quality of life and fertility preservation counseling for girls with gynecological most cancers: an built-in psychological and scientific perspective. J Psychosom Obst Gyn. 2020;41:86–92.

    Article 

    Google Scholar
     

  • Kuan KKW, Saunders PTK. Feminine reproductive methods: Hormone dependence and receptor expression. In: Campbell MJ, Bevan CL, editors. Nuclear receptors in human well being and illness. Cham: Springer Worldwide Publishing; 2022. p. 21–39.

    Chapter 

    Google Scholar
     

  • Chen J, Fang Y, Xu Y, Solar H. Function of m6A modification in feminine infertility and reproductive system ailments. Int J Biol Sci. 2022;18:3592–604.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stejskalová A, Vankelecom H, Sourouni M, Ho MY, Götte M, Almquist BD. In vitro modelling of the physiological and diseased feminine reproductive system. Acta Biomater. 2021;132:288–312.

    Article 
    PubMed 

    Google Scholar
     

  • Kim S, Kim S-W, Han S-J, Lee S, Park H-T, Tune J-Y, Kim T. Molecular mechanism and prevention technique of chemotherapy- and radiotherapy-induced ovarian injury. Int J Mol Sci. 2021;22:7484.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaharwar AK, Singh I, Khademhosseini A. Engineered biomaterials for in situ tissue regeneration. Nat Rev Mater. 2020;5:686–705.

    Article 
    CAS 

    Google Scholar
     

  • Peserico A, Di Berardino C, Capacchietti G, Camerano Spelta Rapini C, Liverani L, Boccaccini AR, Russo V, Mauro A, Barboni B. IVM advances for early antral follicle-enclosed oocytes coupling reproductive tissue engineering to inductive influences of human chorionic gonadotropin and ovarian floor epithelium coculture. Int J Mol Sci. 2023;24:6626.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frances-Herrero E, Lopez R, Hellstrom M, de Miguel-Gomez L, Herraiz S, Brannstrom M, Pellicer A, Cervello I. Bioengineering traits in feminine copy: a scientific evaluate. Hum Reprod Replace. 2022;28:798–837.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heidari-Khoei H, Esfandiari F, Hajari MA, Ghorbaninejad Z, Piryaei A, Baharvand H. Organoid know-how in feminine reproductive biomedicine. Reprod Biol Endocrinol. 2020;18:64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shafiee A, Atala A. Tissue engineering: towards a brand new period of medication. Annu Rev Med. 2017;68:29–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pattanayak P, Singh SK, Gulati M, Vishwas S, Kapoor B, Chellappan DK, Anand Ok, Gupta G, Jha NK, Gupta PK, et al. Microfluidic chips: latest advances, vital methods in design, purposes and future views. Microfluid Nanofluidics. 2021;25:99.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seiler ST, Mantalas GL, Selberg J, Cordero S, Torres-Montoya S, Baudin PV, Ly VT, Amend F, Tran L, Hoffman RN, et al. Modular automated microfluidic cell tradition platform reduces glycolytic stress in cerebral cortex organoids. Sci Rep. 2022;12:20173.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu J, Fang H, Zhang J, Yan S. Modular microfluidics for all times sciences. J Nanobiotechnology. 2023;21:85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Na JT, Hu SY, Xue CD, Wang YX, Chen KJ, Li YJ, Wang Y, Qin KR. A microfluidic system for exactly reproducing physiological blood strain and wall shear stress to endothelial cells. Analyst. 2021;146:5913–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jagannath A, Cong H, Hassan J, Gonzalez G, Gilchrist MD, Zhang N. Pathogen detection on microfluidic platforms: latest advances, challenges, and prospects. Biosens Bioelectron: X. 2022;10: 100134.

    CAS 

    Google Scholar
     

  • Mi F, Hu C, Wang Y, Wang L, Peng F, Geng P, Guan M. Latest developments in microfluidic chip biosensor detection of foodborne pathogenic micro organism: a evaluate. Anal Bioanal Chem. 2022;414:2883–902.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy AR, Campo H, Kim JJ. Methods for modelling endometrial ailments. Nat Rev Endocrinol. 2022;18:727–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang Y, Wu R, Lee JM, Chan LHM, Chan KYJ. Microfluidic in-vitro fertilization applied sciences: reworking the way forward for human copy. Traits Analyt Chem. 2023;160: 116959.

    Article 
    CAS 

    Google Scholar
     

  • Leung ETY, Lee CL, Tian X, Lam KKW, Li RHW, Ng EHY, Yeung WSB, Chiu PCN. Simulating nature in sperm choice for assisted copy. Nat Rev Urol. 2022;19:16–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bodke VV, Burdette JE. Developments in microfluidic methods for the research of feminine reproductive biology. Endocrinology. 2021;162:bqab078.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikshad A, Aghlmandi A, Safaralizadeh R, Aghebati-Maleki L, Warkiani ME, Khiavi FM, Yousefi M. Advances of microfluidic know-how in reproductive biology. Life Sci. 2021;265: 118767.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mancini V, Pensabene V. Organs-on-chip fashions of the feminine reproductive system. Bioengineering. 2019;6:103.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Younger RE, Huh DD. Organ-on-a-chip know-how for the research of the feminine reproductive system. Adv Drug Deliv Rev. 2021;173:461–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borchers A, Pieler T. Programming pluripotent precursor cells derived from Xenopus embryos to generate particular tissues and organs. Genes. 2010;1:413–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark CP, Woolf MS, Karstens SL, Lewis HM, Nauman AQ, Landers JP. Closable valves and channels for polymeric microfluidic gadgets. Micromachines. 2020;11:627.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin Y, Jeon I, You Y, Tune G, Lee TK, Oh J, Son C, Baek D, Kim D, Cho H, et al. Facile microfluidic fabrication of 3D hydrogel SERS substrate with excessive reusability and reproducibility through programmable maskless circulate microlithography. Adv Decide Mater. 2020;8:2001586.

    Article 
    CAS 

    Google Scholar
     

  • Whitesides GM. The origins and the way forward for microfluidics. Nature. 2006;442:368–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren Ok, Zhou J, Wu H. Supplies for microfluidic chip fabrication. Acc Chem Res. 2013;46:2396–406.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou X, Zhang YS, Santiago GT, Alvarez MM, Ribas J, Jonas SJ, Weiss PS, Andrews AM, Aizenberg J, Khademhosseini A. Interaction between supplies and microfluidics. Nat Rev Mater. 2017;2:1.


    Google Scholar
     

  • Solar Z, Wen J, Wang W, Fan H, Chen Y, Yan J, Xiang J. Polyurethane covalently modified polydimethylsiloxane (PDMS) coating with elevated floor vitality and re-coatability. Prog Org Coat. 2020;146: 105744.

    Article 
    CAS 

    Google Scholar
     

  • Employees RH, Landfester Ok, Crespy D. Latest advances within the emulsion solvent evaporation method for the preparation of nanoparticles and nanocapsules. In: Percec V, editor. Hierarchical macromolecular buildings: 60 years after the Staudinger nobel prize II. Cham: Springer; 2013. p. 329–44.

    Chapter 

    Google Scholar
     

  • Ren Ok, Chen Y, Wu H. New supplies for microfluidics in biology. Curr Opin Biotechnol. 2014;25:78–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM. Speedy prototyping of microfluidic methods in Poly(dimethylsiloxane). Anal Chem. 1998;70:4974–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR. Monolithic microfabricated valves and pumps by multilayer smooth lithography. Science. 2000;288:113–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE. Tender lithography in biology and biochemistry. Ann Rev of Biomed Eng. 2001;3:335–73.

    Article 
    CAS 

    Google Scholar
     

  • Sonmez UM, Coyle S, Taylor RE, LeDuc PR. Polycarbonate warmth molding for smooth lithography. Small. 2020;16: e2000241.

    Article 
    PubMed 

    Google Scholar
     

  • Owens CE, Hart AJ. Excessive-precision modular microfluidics by micromilling of interlocking injection-molded blocks. Lab Chip. 2018;18:890–901.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim Y, Tune J, Lee Y, Cho S, Kim S, Lee SR, Park S, Shin Y, Jeon NL. Excessive-throughput injection molded microfluidic system for single-cell evaluation of spatiotemporal dynamics. Lab Chip. 2021;21:3150–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee UN, Su X, Guckenberger DJ, Dostie AM, Zhang T, Berthier E, Theberge AB. Fundamentals of speedy injection molding for microfluidic cell-based assays. Lab Chip. 2018;18:496–504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho CM, Ng SH, Li KH, Yoon YJ. 3D printed microfluidics for organic purposes. Lab Chip. 2015;15:3627–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He Y, Wu Y, Fu JZ, Gao Q, Qiu JJ. Developments of 3D printing microfluidics and purposes in chemistry and biology: a evaluate. Electroanalysis. 2016;28:1658–78.

    Article 
    CAS 

    Google Scholar
     

  • Gonzalez G, Roppolo I, Pirri CF, Chiappone A. Present and rising traits in polymeric 3D printed microfluidic gadgets. Addit Manuf. 2022;55: 102867.

    CAS 

    Google Scholar
     

  • Yi HG, Lee H, Cho DW. 3D printing of organs-on-chips. Bioengineering. 2017;4:10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su R, Wen J, Su Q, Wiederoder MS, Koester SJ, Uzarski JR, McAlpine MC. 3D printed self-supporting elastomeric buildings for multifunctional microfluidics. Sci Adv. 2020;6:eabc9846.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan HN, Chen Y, Shu Y, Chen Y, Tian Q, Wu H. Direct, one-step molding of 3D-printed buildings for handy fabrication of really 3D PDMS microfluidic chips. Microfluid Nanofluid. 2015;19:9–18.

    Article 
    CAS 

    Google Scholar
     

  • Sanchez Noriega JL, Chartrand NA, Valdoz JC, Cribbs CG, Jacobs DA, Poulson D, Viglione MS, Woolley AT, Van Ry PM, Christensen KA, Nordin GP. Spatially and optically tailor-made 3D printing for extremely miniaturized and built-in microfluidics. Nat Commun. 2021;12:5509.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regehly M, Garmshausen Y, Reuter M, Konig NF, Israel E, Kelly DP, Chou CY, Koch Ok, Asfari B, Hecht S. Xolography for linear volumetric 3D printing. Nature. 2020;588:620–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hung PJ, Lee PJ, Sabounchi P, Lin R, Lee LP. Steady perfusion microfluidic cell tradition array for high-throughput cell-based assays. Biotechnol Bioeng. 2005;89:1–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung features on a chip. Science. 2010;328:1662–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovach KM, LaBarbera MA, Moyer MC, Cmolik BL, van Lunteren E, Sen Gupta A, Capadona JR, Potkay JA. In vitro analysis and in vivo demonstration of a biomimetic, hemocompatible, microfluidic synthetic lung. Lab Chip. 2015;15:1366–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doryab A, Amoabediny G, Salehi-Najafabadi A. Advances in pulmonary remedy and drug improvement: lung tissue engineering to lung-on-a-chip. Biotechnol Adv. 2016;34:588–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nelson CM, Gleghorn JP, Pang MF, Jaslove JM, Goodwin Ok, Varner VD, Miller E, Radisky DC, Stone HA. Microfluidic chest cavities reveal that transmural strain controls the speed of lung improvement. Improvement. 2017;144:4328–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Si L, Bai H, Rodas M, Cao W, Oh CY, Jiang A, Moller R, Hoagland D, Oishi Ok, Horiuchi S, et al. A human-airway-on-a-chip for the speedy identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng. 2021;5:815–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar V, Madhurakkat Perikamana SK, Tata A, Hoque J, Gilpin A, Tata PR, Varghese S. An In vitro microfluidic alveolus mannequin to review lung biomechanics. Entrance Bioeng Biotechnol. 2022;10: 848699.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sisodia Y, Shah Ok, Ali Sayyed A, Jain M, Ali SA, Gondaliya P, Kalia Ok, Tekade RK. Lung-on-chip microdevices to foster pulmonary drug discovery. Biomater Sci. 2023;11:777–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sznitman J. Revisiting airflow and aerosol transport phenomena within the deep lungs with microfluidics. Chem Rev. 2022;122:7182–204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jang KJ, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh KY, Ingber DE. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity evaluation. Integr Biol. 2013;5:1119–29.

    Article 
    CAS 

    Google Scholar
     

  • Wilmer MJ, Ng CP, Lanz HL, Vulto P, Suter-Dick L, Masereeuw R. Kidney-on-a-chip know-how for drug-induced nephrotoxicity screening. Traits Biotechnol. 2016;34:156–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qu Y, An F, Luo Y, Lu Y, Liu T, Zhao W, Lin B. A nephron mannequin for research of drug-induced acute kidney harm and evaluation of drug-induced nephrotoxicity. Biomaterials. 2018;155:41–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choudhury MI, Li Y, Mistriotis P, Vasconcelos ACN, Dixon EE, Yang J, Benson M, Maity D, Walker R, Martin L, et al. Kidney epithelial cells are lively mechano-biological fluid pumps. Nat Commun. 2022;13:2317.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gijzen L, Yousef Yengej FA, Schutgens F, Vormann MK, Ammerlaan CME, Nicolas A, Kurek D, Vulto P, Rookmaaker MB, Lanz HL, et al. Tradition and evaluation of kidney tubuloids and perfused tubuloid cells-on-a-chip. Nat Protoc. 2021;16:2023–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and circulate. Lab Chip. 2012;12:2165–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trietsch SJ, Naumovska E, Kurek D, Setyawati MC, Vormann MK, Wilschut KJ, Lanz HL, Nicolas A, Ng CP, Joore J, et al. Membrane-free tradition and real-time barrier integrity evaluation of perfused intestinal epithelium tubes. Nat Commun. 2017;8:262.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin W, Kim HJ. 3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell tradition insert. Nat Protoc. 2022;17:910–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao C, Yu Y, Zhang X, Wu X, Ren J, Zhao Y. Biomimetic intestinal barrier based mostly on microfluidic encapsulated sucralfate microcapsules. Sci Bull. 2019;64:1418–25.

    Article 

    Google Scholar
     

  • Kim HJ, Ingber DE. Intestine-on-a-Chip microenvironment induces human intestinal cells to endure villus differentiation. Integr Biol. 2013;5:1130–40.

    Article 
    CAS 

    Google Scholar
     

  • De Gregorio V, Telesco M, Corrado B, Rosiello V, Urciuolo F, Netti PA, Imparato G. Gut-liver axis on-chip reveals the intestinal protecting function on hepatic injury by emulating ethanol first-pass metabolism. Entrance Bioeng Biotechnol. 2020;8:163.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vega JMH, Hong HJ, Loutherback Ok, Stybayeva G, Revzin A. A microfluidic system for long-term upkeep of organotypic liver cultures. Adv Mater Technol. 2023;8:2201121.

    Article 
    PubMed 

    Google Scholar
     

  • Meng Q, Wang Y, Li Y, Shen C. Hydrogel microfluidic-based liver-on-a-chip: mimicking the mass switch and structural options of liver. Biotechnol Bioeng. 2021;118:612–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang D, Gibeley SB, Xu C, Xiao Y, Celik O, Ginsberg HN, Leong KW. Engineering liver microtissues for illness modeling and regenerative medication. Adv Funct Mater. 2020;30:1909553.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortega-Prieto AM, Skelton JK, Wai SN, Massive E, Lussignol M, Vizcay-Barrena G, Hughes D, Fleck RA, Thursz M, Catanese MT, Dorner M. 3D microfluidic liver cultures as a physiological preclinical instrument for hepatitis B virus an infection. Nat Commun. 2018;9:682.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu X, Wang X, Liao YP, Luo L, Xia T, Nel AE. Use of a liver-targeting immune-tolerogenic mRNA lipid nanoparticle platform to deal with peanut-induced anaphylaxis by single- and multiple-epitope nucleotide sequence supply. ACS Nano. 2023;17:4942–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh N, Ali MA, Rai P, Sharma A, Malhotra BD, John R. Microporous nanocomposite enabled microfluidic biochip for cardiac biomarker detection. ACS Appl Mater Interfaces. 2017;9:33576–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jahn P, Karger RK, Soso Khalaf S, Hamad S, Peinkofer G, Sahito RGA, Pieroth S, Nitsche F, Lu J, Derichsweiler D, et al. Engineering of cardiac microtissues by microfluidic cell encapsulation in thermoshrinking non-crosslinked PNIPAAm gels. Biofabrication. 2022;14: 035017.

    Article 

    Google Scholar
     

  • Tavassoli H, Rorimpandey P, Kang YC, Carnell M, Brownlee C, Pimanda JE, Chan PPY, Chandrakanthan V. Label-free isolation and single cell biophysical phenotyping evaluation of major cardiomyocytes utilizing inertial microfluidics. Small. 2021;17: e2006176.

    Article 
    PubMed 

    Google Scholar
     

  • Michas C, Karakan MÇ, Nautiyal P, Seidman JG, Seidman CE, Agarwal A, Ekinci Ok, Eyckmans J, White AE, Chen CS. Engineering a residing cardiac pump on a chip utilizing high-precision fabrication. Sci Adv. 2022;8:eabm3791.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butcher JT, Murfee WL, Stapleton PA. Rising matters in microvascular analysis: advancing our understanding by interdisciplinary exploration. Microcirculation. 2019;26: e12558.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie J, Gao Q, Wang Y, Zeng J, Zhao H, Solar Y, Shen J, Ramezani H, Fu Z, Liu Z, et al. Vessel-on-a-chip with hydrogel-based microfluidics. Small. 2018;14: e1802368.

    Article 
    PubMed 

    Google Scholar
     

  • Cybulski O, Garstecki P, Grzybowski BA. Oscillating droplet trains in microfluidic networks and their suppression in blood circulate. Nat Phy. 2019;15:706–13.

    Article 
    CAS 

    Google Scholar
     

  • Lim J, Choi G, Joo KI, Cha HJ, Kim J. Embolization of vascular malformations through in situ photocrosslinking of mechanically bolstered alginate microfibers utilizing an optical-fiber-integrated microfluidic system. Adv Mater. 2021;33: e2006759.

    Article 
    PubMed 

    Google Scholar
     

  • Myers DR, Lam WA. Vascularized microfluidics and their untapped potential for discovery in ailments of the microvasculature. Annu Rev Biomed Eng. 2021;23:407–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grebenyuk S, Abdel Fattah AR, Kumar M, Toprakhisar B, Rustandi G, Vananroye A, Salmon I, Verfaillie C, Grillo M, Ranga A. Massive-scale perfused tissues through artificial 3D smooth microfluidics. Nat Commun. 2023;14:193.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohammadi MH, Heidary Araghi B, Beydaghi V, Geraili A, Moradi F, Jafari P, Janmaleki M, Valente KP, Akbari M, Sanati-Nezhad A. Pores and skin ailments modeling utilizing mixed tissue engineering and microfluidic applied sciences. Adv Healthc Mater. 2016;5:2459–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pupovac A, Senturk B, Griffoni C, Maniura-Weber Ok, Rottmar M, McArthur SL. Towards immunocompetent 3D pores and skin fashions. Adv Healthc Mater. 2018;7: e1701405.

    Article 
    PubMed 

    Google Scholar
     

  • Liu JD, Du XY, Chen S. A part inversion-based microfluidic fabrication of helical microfibers in the direction of versatile synthetic belly pores and skin. Angew Chem Int Ed Engl. 2021;60:25089–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Wu Y, Luan H, Yang DS, Cho D, Kwak SS, Liu S, Ryu H, Ghaffari R, Rogers JA. A skin-interfaced, miniaturized microfluidic evaluation and supply system for colorimetric measurements of vitamins in sweat and provide of nutritional vitamins via the pores and skin. Adv Sci. 2022;9: e2103331.

    Article 

    Google Scholar
     

  • Zheng F, Fu F, Cheng Y, Wang C, Zhao Y, Gu Z. Organ-on-a-chip methods: microengineering to biomimic residing methods. Small. 2016;12:2253–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dow Ok. Trying into the check tube: the beginning of IVF on british tv. Med Hist. 2019;63:189–208.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang FN. Actual-time sperm separation system: a evaluate of Wang tubes and associated applied sciences. Arch Androl. 1995;34:13–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lih CH, Obasaju M, McCaffrey C, Gordon JW. Improvement of a microchamber which spontaneously selects high-quality sperm to be used in in vitro fertilization or micromanipulation. J Help Reprod Genet. 1996;13:657–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lan F, Demaree B, Ahmed N, Abate AR. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat Biotechnol. 2017;35:640–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnett KR, Schilling C, Greenfeld CR, Tomic D, Flaws JA. Ovarian follicle improvement and transgenic mouse fashions. Hum Reprod Replace. 2006;12:537–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monniaux D, Clement F, Dalbies-Tran R, Estienne A, Fabre S, Mansanet C, Monget P. The ovarian reserve of primordial follicles and the dynamic reserve of antral rising follicles: what’s the hyperlink? Biol Reprod. 2014;90:85.

    Article 
    PubMed 

    Google Scholar
     

  • Yoon H-J, Lee YJ, Baek S, Chung YS, Kim D-H, Lee JH, Shin YC, Shin YM, Ryu C, Kim H-S, et al. Hormone autocrination by vascularized hydrogel supply of ovary spheroids to rescue ovarian dysfunctions. Sci Adv. 2021;7:eabe8873.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leeners B, Geary N, Tobler PN, Asarian L. Ovarian hormones and weight problems. Hum Reprod Replace. 2017;23:300–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bosetti C, Scotti L, Negri E, Talamini R, Levi F, Franceschi S, Montella M, Giacosa A, La Vecchia C. Benign ovarian cysts and breast most cancers danger. Int J Most cancers. 2006;119:1679–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdelhameed AM, Khater NH, Ahmed SA. Survey of females at college age group between 10–15 years outdated to review the prevalence of ovarian cysts amongst them utilizing pelvic ultrasound. QJM Intern J Med. 2020;113:hcaa068-hcaa11.

    Article 

    Google Scholar
     

  • Bou-Tayeh B, Miller ML. Ovarian tumors orchestrate distinct mobile compositions. Immunity. 2021;54:1107–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu M, Guo Y, Wei S, Xue L, Tang W, Chen D, Xiong J, Huang Y, Fu F, Wu C, et al. Biomaterials and superior applied sciences for the analysis and remedy of ovarian growing older. J Nanobiotechnology. 2022;20:374.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwab FD, Scheidmann MC, Ozimski LL, Kling A, Armbrecht L, Ryser T, Krol I, Strittmatter Ok, Nguyen-Strauli BD, Jacob F, et al. MyCTC chip: microfluidic-based drug display with patient-derived tumour cells from liquid biopsies. Microsyst Nanoeng. 2022;8:130.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Q, Zhu L, Jin L. Human follicle in vitro tradition together with activation, progress, and maturation: a evaluate of analysis progress. Entrance Endocrinol. 2020;11:548.

    Article 

    Google Scholar
     

  • Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A evaluate on biomaterials for ovarian tissue engineering. Acta Biomater. 2021;135:48–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inexperienced LJ, Shikanov A. In vitro tradition strategies of preantral follicles. Theriogenology. 2016;86:229–38.

    Article 
    PubMed 

    Google Scholar
     

  • Desai N, Alex A, AbdelHafez F, Calabro A, Goldfarb J, Fleischman A, Falcone T. Three-dimensional in vitro follicle progress: overview of tradition fashions, biomaterials, design parameters and future instructions. Reprod Biol Endocrinol. 2010;8:119.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eppig JJ, Schroeder AC. Capability of mouse oocytes from preantral follicles to endure embryogenesis and improvement to stay younger after progress, maturation, and fertilization in vitro1. Biol Reprod. 1989;41:268–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eppig JJ, O’Brien MJ. Improvement in vitro of mouse oocytes from primordial follicles1. Biol Reprod. 1996;54:197–207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pais AS, Reis S, Laranjo M, Caramelo F, Silva F, Botelho MF, Almeida-Santos T. The problem of ovarian tissue tradition: 2D versus 3D tradition. J Ovarian Res. 2021;14:147.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antel M, Inaba M. Modulation of cell-cell interactions in drosophila oocyte improvement. Cells. 2020;9:274.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suenaga H, Kagaya N, Kawada M, Tatsuda D, Sato T, Shin-ya Ok. Phenotypic screening system utilizing three-dimensional (3D) tradition fashions for pure product screening. J Antibiot. 2021;74:660–6.

    Article 
    CAS 

    Google Scholar
     

  • Shen C, Zhang G, Meng Q. Analysis of amiodarone-induced phospholipidosis by in vitro system of 3D cultured rat hepatocytes in gel entrapment. Biochem Eng J. 2010;49:308–16.

    Article 
    CAS 

    Google Scholar
     

  • Laronda MM, Rutz AL, Xiao S, Whelan KA, Duncan FE, Roth EW, Woodruff TK, Shah RN. A bioprosthetic ovary created utilizing 3D printed microporous scaffolds restores ovarian operate in sterilized mice. Nat Commun. 2017;8:15261.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joo S, Oh SH, Sittadjody S, Opara EC, Jackson JD, Lee SJ, Yoo JJ, Atala A. The impact of collagen hydrogel on 3D tradition of ovarian follicles. Biomed Mater. 2016;11: 065009.

    Article 
    PubMed 

    Google Scholar
     

  • Sart S, Ronteix G, Jain S, Amselem G, Baroud CN. Cell tradition in microfluidic droplets. Chem Rev. 2022;122:7061–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Younger EW, Beebe DJ. Fundamentals of microfluidic cell tradition in managed microenvironments. Chem Soc Rev. 2010;39:1036–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He X. Microfluidic encapsulation of ovarian follicles for 3D tradition. Ann Biomed Eng. 2017;45:1676–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi JK, Agarwal P, Huang H, Zhao S, He X. The essential function of mechanical heterogeneity in regulating follicle improvement and ovulation with engineered ovarian microtissue. Biomaterials. 2014;35:5122–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frey L, Bandaru P, Zhang YS, O’Kelly Ok, Khademhosseini A, Shin SR. A Twin-layered microfluidic system for long-term managed in situ supply of a number of anti-inflammatory elements for continual neural purposes. Adv Funct Mater. 2018;28:1702009.

    Article 
    PubMed 

    Google Scholar
     

  • Xiao S, Coppeta JR, Rogers HB, Isenberg BC, Zhu J, Olalekan SA, McKinnon KE, Dokic D, Rashedi AS, Haisenleder DJ, et al. A microfluidic tradition mannequin of the human reproductive tract and 28-day menstrual cycle. Nat Commun. 2017;8:14584.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aziz AUR, Fu M, Deng J, Geng C, Luo Y, Lin B, Yu X, Liu B. A microfluidic system for culturing an encapsulated ovarian follicle. Micromachines. 2017;8:335.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Healy MW, Dolitsky SN, Villancio-Wolter M, Raghavan M, Tillman AR, Morgan NY, DeCherney AH, Park S, Wolff EF. Creating a man-made third-dimensional ovarian follicle tradition system utilizing a microfluidic system. Micromachines. 2021;12:261.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sirait B, Wiweko B, Jusuf AA, Iftitah D, Muharam R. Oocyte competence biomarkers related to oocyte maturation: a evaluate. Entrance Cell Dev Biol. 2021;9: 710292.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huarte J, Stutz A, O’Connell ML, Gubler P, Belin D, Darrow AL, Strickland S, Vassalli J-D. Transient translational silencing by reversible mRNA deadenylation. Cell. 1992;69:1021–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pepling ME. Nursing the oocyte. Science. 2016;352:35–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Zhu S, Shu W, Guo Y, Guan Y, Zeng J, Wang H, Han L, Zhang J, Liu X, et al. Characterization of metabolic patterns in mouse oocytes throughout meiotic maturation. Mol Cell. 2020;80(525–540): e529.


    Google Scholar
     

  • Guo Y, Cai L, Liu X, Ma L, Zhang H, Wang B, Qi Y, Liu J, Diao F, Sha J, Guo X. Single-cell quantitative proteomic evaluation of human oocyte maturation revealed excessive heterogeneity in in Vitro-matured oocytes. Mol Cell Proteomics. 2022;21: 100267.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Virant-Klun I, Leicht S, Hughes C, Krijgsveld J. Identification of maturation-specific proteins by single-cell proteomics of human oocytes. Mol Cell Proteomics. 2016;15:2616–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ernst EH, Grondahl ML, Grund S, Hardy Ok, Heuck A, Sunde L, Franks S, Andersen CY, Villesen P, Lykke-Hartmann Ok. Dormancy and activation of human oocytes from primordial and first follicles: molecular clues to oocyte regulation. Hum Reprod. 2017;32:1684–700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu XS, Liu XJ. Oocyte isolation and enucleation. In: Liu XJ, editor. Xenopus protocols: cell biology and sign transduction. Totowa: Humana Press; 2006. p. 31–41.

    Chapter 

    Google Scholar
     

  • Yanez LZ, Camarillo DB. Microfluidic evaluation of oocyte and embryo biomechanical properties to enhance outcomes in assisted reproductive applied sciences. Mol Hum Reprod. 2017;23:235–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turathum B, Gao EM, Chian RC. The operate of cumulus cells in oocyte progress and maturation and in subsequent ovulation and fertilization. Cells. 2021;10:2292.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo N, Yang F, Liu Q, Ren X, Zhao H, Li Y, Ai J. Results of cumulus cell elimination time throughout in vitro fertilization on embryo high quality and being pregnant outcomes: a potential randomized sibling-oocyte research. Reprod Biol Endocrinol. 2016;14:18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashibe S, Irisawa Ok, Yokawa Ok, Nagao Y. Mechanism of the antagonistic impact of hyaluronidase used for oocyte denudation on early improvement of bovine embryos. Zygote. 2021;29:337–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeringue HC, Rutledge JJ, Beebe DJ. Early mammalian embryo improvement depends upon cumulus elimination method. Lab Chip. 2005;5:86–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeringue HC, Beebe DJ. Microfluidic elimination of cumulus cells from Mammalian zygotes. In: Schatten H, editor. Germ cell protocols: molecular embryo evaluation, stay imaging, transgenesis, and cloning, vol. 2. Totowa: Humana Press; 2004. p. 365–73.

    Chapter 

    Google Scholar
     

  • Weng L, Lee GY, Liu J, Kapur R, Toth TL, Toner M. On-chip oocyte denudation from cumulus-oocyte complexes for assisted reproductive remedy. Lab Chip. 2018;18:3892–902.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Memon Ok, Cao Y, Zhao G. A microfluidic method for synchronous and nondestructive research of the permeability of a number of oocytes. Microsyst Nanoeng. 2020;6:55.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakahara Ok, Sakuma S, Hayakawa T, Arai F. On-Chip transportation and measurement of mechanical traits of oocytes in an open atmosphere. Micromachines. 2015;6:648–59.

    Article 

    Google Scholar
     

  • Iwasaki W, Yamanaka Ok, Sugiyama D, Teshima Y, Briones-Nagata MP, Maeki M, Yamashita Ok, Takahashi M, Miyazaki M. Easy separation of fine high quality bovine oocytes utilizing a microfluidic system. Sci Rep. 2018;8:14273.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han C, Zhang Q, Ma R, Xie L, Qiu T, Wang L, Mitchelson Ok, Wang J, Huang G, Qiao J, Cheng J. Integration of single oocyte trapping, in vitro fertilization and embryo tradition in a microwell-structured microfluidic system. Lab Chip. 2010;10:2848–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi W, Kim JS, Lee DH, Lee KK, Koo DB, Park JK. Dielectrophoretic oocyte choice chip for in vitro fertilization. Biomed Microdevices. 2008;10:337–45.

    Article 
    PubMed 

    Google Scholar
     

  • Hosseini SM, Asgari V, Ostadhosseini S, Hajian M, Ghanaei HR, Nasr-Esfahani MH. Developmental competence of ovine oocytes after vitrification: differential results of vitrification steps, embryo manufacturing strategies, and parental origin of pronuclei. Theriogenology. 2015;83:366–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clark NA, Swain JE. Oocyte cryopreservation: trying to find novel enchancment methods. J Help Reprod Genet. 2013;30:865–75.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Zhang Z, Guo X, Memon Ok, Panhwar F, Wang M, Cao Y, Zhao G. Sensing cell membrane biophysical properties for detection of top of the range human oocytes. ACS Sens. 2019;4:192–9.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao G, Zhang Z, Zhang Y, Chen Z, Niu D, Cao Y, He X. A microfluidic perfusion method for on-chip characterization of the transport properties of human oocytes. Lab Chip. 2017;17:1297–305.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei Z, Xie D, Mbogba MK, Chen Z, Tian C, Xu L, Zhao G. A microfluidic platform with cell-scale exact temperature management for simultaneous investigation of the osmotic responses of a number of oocytes. Lab Chip. 2019;19:1929–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takeuchi T, Palermo GD. Implications of cloning method for reproductive medication. Reprod BioMed Onl. 2004;8:509–15.

    Article 

    Google Scholar
     

  • Hagiwara M, Kawahara T, Yamanishi Y, Masuda T, Feng L, Arai F. On-chip magnetically actuated robotic with ultrasonic vibration for single cell manipulations. Lab Chip. 2011;11:2049–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hagiwara M, Kawahara T, Yamanishi Y, Arai F. Driving technique of microtool by horizontally organized everlasting magnets for single cell manipulation. Appl Phy Lett. 2010;97: 013701.

    Article 

    Google Scholar
     

  • Inomata N, Mizunuma T, Yamanishi Y, Arai F. Omnidirectional actuation of magnetically pushed microtool for chopping of oocyte in a chip. J Microelectromech Syst. 2011;20:383–8.

    Article 

    Google Scholar
     

  • Hagiwara M, Kawahara T, Yamanishi Y, Arai F. Exact management of magnetically pushed microtools for enucleation of oocytes in a microfluidic chip. Adv Rob. 2012;25:991–1005.

    Article 

    Google Scholar
     

  • Ichikawa A, Sakuma S, Sugita M, Shoda T, Tamakoshi T, Akagi S, Arai F. On-chip enucleation of an oocyte by untethered microrobots. J Micromech Microeng. 2014;24: 095004.

    Article 

    Google Scholar
     

  • Feng L, Hagiwara M, Ichikawa A, Arai F. On-Chip Enucleation of Bovine oocytes utilizing microrobot-assisted flow-speed management. Micromachines. 2013;4:272–85.

    Article 

    Google Scholar
     

  • Feng L, Solar Y, Ohsumi C, Arai F. Correct allotting system for single oocytes utilizing air ejection. Biomicrofluidics. 2013;7:54113.

    Article 
    PubMed 

    Google Scholar
     

  • Feng L, Zhou Q, Tune B, Feng Y, Cai J, Jiang Y, Zhang D. Cell injection millirobot improvement and analysis in microfluidic chip. Micromachines. 2018;9:590.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayakawa T, Sakuma S, Arai F. On-chip 3D rotation of oocyte based mostly on a vibration-induced native whirling circulate. Microsyst Nanoeng. 2015;1:1.

    Article 

    Google Scholar
     

  • Feng L, Tune B, Chen Y, Liang S, Dai Y, Zhou Q, Chen D, Bai X, Feng Y, Jiang Y, et al. On-chip rotational manipulation of microbeads and oocytes utilizing acoustic microstreaming generated by oscillating asymmetrical microstructures. Biomicrofluidics. 2019;13: 064103.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Valle JS, Mancini V, Laverde Garay M, Asseler JD, Fan X, Metzemaekers J, Louwe LA, Pilgram GSK, van der Westerlaken LAJ, van Mello NM, Chuva de Sousa Lopes SM. Dynamic in vitro tradition of cryopreserved-thawed human ovarian cortical tissue utilizing a microfluidics platform doesn’t enhance early folliculogenesis. Entrance Endocrinol. 2022;13: 936765.

    Article 

    Google Scholar
     

  • Moussa M, Shu J, Zhang X, Zeng F. Cryopreservation of mammalian oocytes and embryos: present issues and future views. Sci China Life Sci. 2014;57:903–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heo YS, Lee HJ, Hassell BA, Irimia D, Toth TL, Elmoazzen H, Toner M. Managed loading of cryoprotectants (CPAs) to oocyte with linear and complicated CPA profiles on a microfluidic platform. Lab Chip. 2011;11:3530–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mata C, Longmire EK, McKenna DH, Glass KK, Hubel A. Experimental research of diffusion-based extraction from a cell suspension. Microfluid Nanofluid. 2008;5:529–40.

    Article 

    Google Scholar
     

  • Pegg DE. The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology. 2020;93:3–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vajta G, Nagy ZP. Are programmable freezers nonetheless wanted within the embryo laboratory? Assessment on vitrification. Reprod BioMed Onl. 2006;12:779–96.

    Article 

    Google Scholar
     

  • Park S, Wijethunga PA, Moon H, Han B. On-chip characterization of cryoprotective agent mixtures utilizing an EWOD-based digital microfluidic system. Lab Chip. 2011;11:2212–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pyne DG, Liu J, Abdelgawad M, Solar Y. Digital microfluidic processing of mammalian embryos for vitrification. PLoS ONE. 2014;9: e108128.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tirgar P, Sarmadi F, Najafi M, Kazemi P, AzizMohseni S, Fayazi S, Zandi G, Ziaie N, Shoushtari Zadeh Naseri A, Ehrlicher A, Dashtizad M. Towards embryo cryopreservation-on-a-chip: a standalone microfluidic platform for gradual loading of cryoprotectants to attenuate cryoinjuries. Biomicrofluidics. 2021;15: 034104.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao S, Jiang Z, Luo J, Zhong F, Wei H, Solar X, Jiang X, Jiang M, Liu YH. A robotic system with embedded open microfluidic chip for computerized embryo vitrification. IEEE Trans Biomed Eng. 2022;69:3562–71.

    Article 
    PubMed 

    Google Scholar
     

  • Eddy CA, Pauerstein CJ. Anatomy and physiology of the fallopian tube. Clin Obstet Gynecol. 1980;23:1177.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghersevich S, Massa E, Zumoffen C. Oviductal secretion and gamete interplay. Copy. 2015;149:R1–14.

    Article 
    PubMed 

    Google Scholar
     

  • Ezzati M, Djahanbakhch O, Arian S, Carr BR. Tubal transport of gametes and embryos: a evaluate of physiology and pathophysiology. J Help Reprod Genet. 2014;31:1337–47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menezo Y, Guerin P. The mammalian oviduct: biochemistry and physiology. Eur J Obstet Gyn R B. 1997;73:99–104.

    Article 
    CAS 

    Google Scholar
     

  • Huang BK, Choma MA. Microscale imaging of cilia-driven fluid circulate. Cell Mol Life Sci. 2015;72:1095–113.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buhi WC. Characterization and organic roles of oviduct-specific, oestrogen-dependent glycoprotein. Copy. 2002;123:355–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferraz M, Henning HHW, Stout TAE, Vos P, Gadella BM. Designing third-dimensional in vitro oviduct tradition methods to review mammalian fertilization and embryo manufacturing. Ann Biomed Eng. 2017;45:1731–44.

    Article 
    PubMed 

    Google Scholar
     

  • Leemans B, Bromfield EG, Stout TAE, Vos M, Van Der Ham H, Van Beek R, Van Soom A, Gadella BM, Henning H. Growing a reproducible protocol for culturing practical confluent monolayers of differentiated equine oviduct epithelial cellsdagger. Biol Reprod. 2022;106:710–29.

    Article 
    PubMed 

    Google Scholar
     

  • Romero-Aguirregomezcorta J, Laguna-Barraza R, Fernández-González R, Štiavnická M, Ward F, Cloherty J, McAuliffe D, Larsen PB, Grabrucker AM, Gutiérrez-Adán A. Sperm choice by rheotaxis improves sperm high quality and early embryo improvement. Copy. 2021;161:343–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yetkinel S, Kilicdag EB, Aytac PC, Haydardedeoglu B, Simsek E, Cok T. Results of the microfluidic chip method in sperm choice for intracytoplasmic sperm injection for unexplained infertility: a potential, randomized managed trial. J Help Reprod Genet. 2019;36:403–9.

    Article 
    PubMed 

    Google Scholar
     

  • Huang HY, Kao WL, Wang YW, Yao DJ. Utilizing a dielectrophoretic microfluidic biochip enhanced fertilization of mouse embryo in vitro. Micromachines. 2020;11:714.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang HY, Shen HH, Tien CH, Li CJ, Fan SK, Liu CH, Hsu WS, Yao DJ. Digital microfluidic dynamic tradition of mammalian embryos on an electrowetting on dielectric (EWOD) Chip. PLoS ONE. 2015;10: e0124196.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang HY, Huang YH, Kao WL, Yao DJ. Embryo formation from low sperm focus through the use of dielectrophoretic pressure. Biomicrofluidics. 2015;9: 022404.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang M, Zhu T, Liu C, Jin L, Fei P, Zhang B. Oviduct-mimicking microfluidic chips decreased the ROS focus within the in vitro fertilized embryos of CD-1 mice. Biomed Pharmacother. 2022;154: 113567.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clark SG, Haubert Ok, Beebe DJ, Ferguson CE, Wheeler MB. Discount of polyspermic penetration utilizing biomimetic microfluidic know-how throughout in vitro fertilization. Lab Chip. 2005;5:1229–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang B, Yin TL, Yang J. A novel microfluidic system for choosing human sperm to extend the proportion of morphologically regular, motile sperm with uncompromised DNA integrity. Anal Strategies. 2015;7:5981–8.

    Article 
    CAS 

    Google Scholar
     

  • Ferraz M, Rho HS, Hemerich D, Henning HHW, van Tol HTA, Holker M, Besenfelder U, Mokry M, Vos P, Stout TAE, et al. An oviduct-on-a-chip supplies an enhanced in vitro atmosphere for zygote genome reprogramming. Nat Commun. 2018;9:4934.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu SX, Wu Y, Luo H, Liu Y, Chen YC, Wang YJ, Liu W, Tang J, Shi H, Gao H, et al. Escaping habits of sperms on the biomimetic oviductal floor. Anal Chem. 2023;95:2366–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimbizis GF. The pathophysiology of septate uterus. BJOG. 2019;126:1200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim SY, Kim SK, Lee JR, Woodruff TK. Ovary is critical to the well being of uterus. J Gynecol Oncol. 2016;27: e35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toson B, Simon C, Moreno I. The endometrial microbiome and its influence on human conception. Int J Mol Sci. 2022;23:485.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elnashar AM. Impression of endometrial microbiome on fertility. Center East Fertil Soc J. 2021;26:1.

    Article 

    Google Scholar
     

  • Lin J, Wang Z, Huang J, Tang S, Saiding Q, Zhu Q, Cui W. Microenvironment-protected exosome-hydrogel for facilitating endometrial regeneration, fertility restoration, and stay beginning of offspring. Small. 2021;17: e2007235.

    Article 
    PubMed 

    Google Scholar
     

  • Gnecco JS, Pensabene V, Li DJ, Ding T, Hui EE, Bruner-Tran KL, Osteen KG. Compartmentalized tradition of perivascular stroma and endothelial cells in a microfluidic mannequin of the human endometrium. Ann Biomed Eng. 2017;45:1758–69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gnecco JS, Ding T, Smith C, Lu J, Bruner-Tran KL, Osteen KG. Hemodynamic forces improve decidualization through endothelial-derived prostaglandin E2 and prostacyclin in a microfluidic mannequin of the human endometrium. Hum Reprod. 2019;34:702–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn J, Yoon MJ, Hong SH, Cha H, Lee D, Koo HS, Ko JE, Lee J, Oh S, Jeon NL, Kang YJ. Three-dimensional microengineered vascularised endometrium-on-a-chip. Hum Reprod. 2021;36:2720–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radnaa E, Richardson LS, Sheller-Miller S, Baljinnyam T, de Castro SM, Kumar Kammala A, Urrabaz-Garza R, Kechichian T, Kim S, Han A, Menon R. Extracellular vesicle mediated feto-maternal HMGB1 signaling induces preterm beginning. Lab Chip. 2021;21:1956–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guzeloglu-Kayisli O, Kayisli UA, Taylor HS. The function of progress elements and cytokines throughout implantation: endocrine and paracrine interactions. Semin Reprod Med. 2009;27:62–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paria BC, Tune H, Dey SK. Implantation: molecular foundation of embryo-uterine dialogue. Int J Dev Biol. 2002;45:597–605.


    Google Scholar
     

  • Yu W, Niu W, Wang S, Chen X, Solar BO, Wang F, Solar Y. Co-culture with endometrial stromal cells enhances the differentiation of human embryonic stem cells into endometrium-like cells. Exp Ther Med. 2015;10:43–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubio C, Simón C, Mercader A, Garcia-Velasco J, Remohí J, Pellicer A. Medical expertise using co-culture of human embryos with autologous human endometrial epithelial cells. Hum Reprod. 2000;15(Suppl 6):31–8.

    PubMed 

    Google Scholar
     

  • Arnold JT, Kaufman DG, Seppälä M, Lessey BA. Endometrial stromal cells regulate epithelial cell progress in vitro: a brand new co-culture mannequin. Hum Reprod. 2001;16:836–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van den Model AD, Rubinstein E, de Jong PC, van den Berg M, van Duursen MBM. Main endometrial 3D co-cultures: a comparability between human and rat endometrium. J Steroid Biochem Mol Biol. 2019;194: 105458.

    Article 
    PubMed 

    Google Scholar
     

  • Moutinho TJ Jr, Panagides JC, Biggs MB, Medlock GL, Kolling GL, Papin JA. Novel co-culture plate allows progress dynamic-based evaluation of contact-independent microbial interactions. PLoS ONE. 2017;12: e0182163.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen YS, Lo T-W, Huang H-Y, Li L-M, Wang Y-W, Yao D-J, Hsu W-S, Liu C-H. A microfluidic lab chip for the manipulation and co-culturing of embryos with stromal cells. Sens Actuators B Chem. 2021;349: 130820.

    Article 
    CAS 

    Google Scholar
     

  • Bhosale S, Chen M, Liu CH. In vitro improvement of the embryo in a microfluidic system for computerized embryo trapping and co-culture with endometrial cells. In: 2019 twentieth Worldwide convention on solid-state sensors, actuators and microsystems and eurosensors XXXIII (transducers and eurosensors XXXIII); 23–27 June 2019. 2019: Berlin: IEEE. pp. 736–739.

  • Murphy VE, Smith R, Giles WB, Clifton VL. Endocrine regulation of human fetal progress: the function of the mom, placenta, and fetus. Endocr Rev. 2006;27:141–69.

    Article 
    PubMed 

    Google Scholar
     

  • Robinson J, Chidzanja S, Form Ok, Lok F, Owens P, Owens J. Placental management of fetal progress. Reprod Fertil Dev. 1995;7:333–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costa MA. The endocrine operate of human placenta: an outline. Reprod Biomed Onl. 2016;32:14–43.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Mosavati B, Oleinikov AV, Du E. Biosensors for detection of human placental pathologies: a evaluate of rising applied sciences and present traits. Transl Res. 2019;213:23–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosavati B, Oleinikov AV, Du E. Improvement of an organ-on-a-chip-device for research of placental pathologies. Int J Mol Sci. 2020;21:8755.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosavati B, Oleinikov A, Du E. 3D microfluidics-assisted modeling of glucose transport in placental malaria. Sci Rep. 2022;12:15278.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burton GJ, Fowden AL. Assessment: the placenta and developmental programming: balancing fetal nutrient calls for with maternal useful resource allocation. Placenta. 2012;33(Suppl):S23-27.

    Article 
    PubMed 

    Google Scholar
     

  • Cherubini M, Erickson S, Haase Ok. Modelling the human placental interface in vitro: a evaluate. Micromachines. 2021;12:884.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boos JA, Misun PM, Brunoldi G, Furer LA, Aengenheister L, Modena M, Rousset N, Buerki-Thurnherr T, Hierlemann A. Microfluidic co-culture platform to recapitulate the maternal-placental-embryonic axis. Adv Biol. 2021;5: e2100609.

    Article 

    Google Scholar
     

  • Pu Y, Gingrich J, Veiga-Lopez A. A third-dimensional microfluidic platform for modeling human extravillous trophoblast invasion and toxicological screening. Lab Chip. 2021;21:546–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandt D, Gruber P, Markovic M, Tromayer M, Rothbauer M, Kratz SRA, Ali SF, Hoorick JV, Holnthoner W, Muhleder S, et al. Fabrication of biomimetic placental barrier buildings inside a microfluidic system using two-photon polymerization. Int J Bioprint. 2018;4:144.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park JY, Mani S, Clair G, Olson HM, Paurus VL, Ansong CK, Blundell C, Younger R, Kanter J, Gordon S, et al. A microphysiological mannequin of human trophoblast invasion throughout implantation. Nat Commun. 2022;13:1252.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cherubini M, Haase Ok. A bioengineered mannequin for learning vascular-pericyte interactions of the placenta. In: Margadant C, editor. Cell migration in three dimensions. New York: Springer; 2023. p. 409–23.

    Chapter 

    Google Scholar
     

  • Pemathilaka RL, Caplin JD, Aykar SS, Montazami R, Hashemi NN. Placenta-on-a-chip: in vitro research of caffeine transport throughout placental barrier utilizing liquid chromatography mass spectrometry. Glob Chall. 2019;3:1800112.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richardson LS, Kammala AK, Costantine MM, Fortunato SJ, Radnaa E, Kim S, Taylor RN, Han A, Menon R. Testing of medicine utilizing human feto-maternal interface organ-on-chips present insights into pharmacokinetics and efficacy. Lab Chip. 2022;22:4574–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knowlton SM, Sadasivam M, Tasoglu S. Microfluidics for sperm analysis. Traits Biotechnol. 2015;33:221–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Domingues RM, Silva M, Gershovich P, Betta S, Babo P, Caridade SG, Mano JF, Motta A, Reis RL, Gomes ME. Improvement of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering purposes. Bioconjug Chem. 2015;26:1571–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eamer L, Nosrati R, Vollmer M, Zini A, Sinton D. Microfluidic evaluation of swimming media for motility-based sperm choice. Biomicrofluidics. 2015;9: 044113.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivic A, Onyeaka H, Girling A, Brewis IA, Ola B, Hammadieh N, Papaioannou S, Barratt CLR. Important analysis of methylcellulose instead medium in sperm migration assessments. Hum Reprod. 2002;17:143–9.

    Article 
    PubMed 

    Google Scholar
     

  • Lee M, Park JW, Kim D, Kwon H, Cho MJ, Lee EJ, Shin TE, Kim DK, Lee S, Byeun DG, et al. Viscous cervical environment-on-a-chip for choosing high-quality sperm from human semen. Biomedicines. 2021;9:1439.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitaya Ok, Nagai Y, Arai W, Sakuraba Y, Ishikawa T. Characterization of microbiota in endometrial gluid and vaginal secretions in infertile girls with repeated implantation failure. Mediators Inflamm. 2019;2019:4893437.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paavonen J, Brunham RC. Bacterial vaginosis and desquamative inflammatory vaginitis. N Engl J Med. 2018;379:2246–54.

    Article 
    PubMed 

    Google Scholar
     

  • Wang J, Li Z, Ma X, Du L, Jia Z, Cui X, Yu L, Yang J, Xiao L, Zhang B, et al. Translocation of vaginal microbiota is concerned in impairment and safety of uterine well being. Nat Commun. 2021;12:4191.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riganelli L, Iebba V, Piccioni M, Illuminati I, Bonfiglio G, Neroni B, Calvo L, Gagliardi A, Levrero M, Merlino L, et al. Structural variations of vaginal and endometrial microbiota: hints on feminine infertility. Entrance Cell Infect Microbiol. 2020;10:350.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadogami D, Nakaoka Y, Morimoto Y. Use of a vaginal probiotic suppository and antibiotics to affect the composition of the endometrial microbiota. Reprod Biol. 2020;20:307–14.

    Article 
    PubMed 

    Google Scholar
     

  • Punzon-Jimenez P, Labarta E. The influence of the feminine genital tract microbiome in girls well being and copy: a evaluate. J Help Reprod Genet. 2021;38:2519–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lull Ok, Saare M, Peters M, Kakhiani E, Zhdanova A, Salumets A, Boyarsky Ok, Org E. Variations in microbial profile of endometrial fluid and tissue samples in girls with in vitro fertilization failure are pushed by Lactobacillus abundance. Acta Obstet Gynecol Scand. 2022;101:212–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spence D, Melville C. Vaginal discharge. BMJ. 2007;335:1147–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh Ok, Mach KE, Zhang P, Liao JC, Wang TH. Combating antimicrobial resistance through single-cell diagnostic applied sciences powered by droplet microfluidics. Acc Chem Res. 2022;55:123–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahajan G, Doherty E, To T, Sutherland A, Grant J, Junaid A, Gulati A, LoGrande N, Izadifar Z, Timilsina SS, et al. Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip. Microbiome. 2022;10:201.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shu Z, Hughes SM, Fang C, Huang J, Fu B, Zhao G, Fialkow M, Lentz G, Hladik F, Gao D. A research of the osmotic traits, water permeability, and cryoprotectant permeability of human vaginal immune cells. Cryobiology. 2016;72:93–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maenhoudt N, De Moor A, Vankelecom H. Modeling endometrium biology and illness. J Pers Med. 2022;12:1048.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verduin M, Hoeben A, De Ruysscher D, Vooijs M. Affected person-derived most cancers organoids as predictors of remedy response. Entrance Oncol. 2021;11: 641980.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golabek-Grenda A, Olejnik A. In vitro modeling of endometriosis and endometriotic microenvironment: challenges and up to date advances. Cell Sign. 2022;97: 110375.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Dai Y, Dong Z, Li M, Mu X, Zhang R, Wang Z, Zhang W, Lang J, Leng J, Jiang X. Co-cultured endometrial stromal cells and peritoneal mesothelial cells for an in vitro mannequin of endometriosis. Integr Biol. 2012;4:1090–5.

    Article 
    CAS 

    Google Scholar
     

  • Chen CH, Miller MA, Sarkar A, Beste MT, Isaacson KB, Lauffenburger DA, Griffith LG, Han J. Multiplexed protease exercise assay for low-volume scientific samples utilizing droplet-based microfluidics and its software to endometriosis. J Am Chem Soc. 2013;135:1645–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altayyeb A, Othman E, Khashbah M, Esmaeel A, El-Mokhtar M, Lambalk C, Mijatovic V, Abdelgawad M. Characterization of mechanical signature of eutopic endometrial stromal cells of endometriosis sufferers. Reprod Sci. 2020;27:364–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Ushida T, Montagne Ok, Hirota Y, Yoshino O, Hiraoka T, Osuga Y, Furuakwa KS. Acquired contractile means in human endometrial stromal cells by passive loading of cyclic tensile stretch. Sci Rep. 2020;10:9014.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harada M, Osuga Y, Hirota Y, Koga Ok, Morimoto C, Hirata T, Yoshino O, Tsutsumi O, Yano T, Taketani Y. Mechanical stretch stimulates interleukin-8 manufacturing in endometrial stromal cells: doable implications in endometrium-related occasions. J Clin Endocrinol Metab. 2005;90:1144–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elad D, Zaretsky U, Kuperman T, Gavriel M, Lengthy M, Jaffa A, Grisaru D. Tissue engineered endometrial barrier uncovered to peristaltic circulate shear stresses. APL Bioeng. 2020;4: 026107.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulletti C, De Ziegler D, Polli V, Del Ferro E, Palini S, Flamigni C. Traits of uterine contractility throughout menses in girls with gentle to average endometriosis. Fertil and Steril. 2002;77:1156–61.

    Article 

    Google Scholar
     

  • Kirschen GW, AlAshqar A, Miyashita-Ishiwata M, Reschke L, El Sabeh M, Borahay MA. Vascular biology of uterine fibroids: connecting fibroids and vascular problems. Copy. 2021;162:R1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerjee S, Xu W, Chowdhury I, Driss A, Ali M, Yang Q, Al-Hendy A, Thompson WE. Human myometrial and uterine fibroid stem cell-derived organoids for intervening the pathophysiology of uterine fibroid. Reprod Sci. 2022;29:2607–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brosens I, Pijnenborg R, Vercruysse L, Romero R. The “Nice Obstetrical Syndromes” are related to problems of deep placentation. Am J Obstet Gynecol. 2011;204:193–201.

    Article 
    PubMed 

    Google Scholar
     

  • Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. In vitro cell migration and invasion assays. J Vis Exp. 2014. https://doi.org/10.3791/51046-v.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbas Y, Oefner CM, Polacheck WJ, Gardner L, Farrell L, Sharkey A, Kamm R, Moffett A, Oyen ML. A microfluidics assay to review invasion of human placental trophoblast cells. J R Soc Interface. 2017;14:20170131.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghorbanpour SM, Richards C, Pienaar D, Sesperez Ok, Aboulkheyr Es H, Nikolic VN, Karadzov Orlic N, Mikovic Z, Stefanovic M, Cakic Z, et al. A placenta-on-a-chip mannequin to find out the regulation of FKBPL and galectin-3 in preeclampsia. Cell Mol Life Sci. 2023;80:44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yokoyama Y, Nakamura T, Nakamura R, Irahara M, Aono T, Sugino H. Identification of activins and follistatin proteins in human follicular fluid and placenta. J Clin Endocrinol Metab. 1995;80:915–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Qi Y, Yang Ok, Zhu L, Cui X, Liu Z. Follistatin is a novel chemoattractant for migration and invasion of placental trophoblasts of mice. Cells. 2022;11:3816.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbaspour A, Casillas AL, McGregor SM, Kreeger PK. Bioengineering approaches to enhance gynecological most cancers outcomes. Curr Opin Biomed Eng. 2022;22:100384.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brancato V, Oliveira JM, Correlo VM, Reis RL, Kundu SC. Might 3D fashions of most cancers improve drug screening? Biomaterials. 2020;232: 119744.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding L, Liu C, Yin S, Zhou Z, Chen J, Chen X, Chen L, Wang D, Liu B, Liu Y, et al. Engineering a dynamic three-dimensional cell culturing microenvironment utilizing a “sandwich” structure-liked microfluidic system with 3D printing scaffold. Biofabrication. 2022;14: 045014.

    Article 

    Google Scholar
     

  • Poveda A, Romero I. Superior ovarian most cancers: 20 years of ovarian most cancers remedy. Ann Oncol. 2016;27(Suppl 1):i72–3.

    Article 
    PubMed 

    Google Scholar
     

  • Wu Y, Wang C, Wang P, Wang C, Zhang Y, Han L. A high-performance microfluidic detection platform to conduct a novel multiple-biomarker panel for ovarian most cancers screening. RSC Adv. 2021;11:8124–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez E, Kamboj S, Chen C, Wang Z, Kellouche S, Leroy-Dudal J, Carreiras F, Lambert A, Aimé C. In vitro fashions of ovarian most cancers: bridging the hole between pathophysiology and mechanistic fashions. Biomolecules. 2023;13:103.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dadgar N, Gonzalez-Suarez AM, Fattahi P, Hou X, Weroha JS, Gaspar-Maia A, Stybayeva G, Revzin A. A microfluidic platform for cultivating ovarian most cancers spheroids and testing their responses to chemotherapies. Microsyst Nanoeng. 2020;6:93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibrahim LI, Hajal C, Offeddu GS, Gillrie MR, Kamm RD. Omentum-on-a-chip: a multicellular, vascularized microfluidic mannequin of the human peritoneum for the research of ovarian most cancers metastases. Biomaterials. 2022;288: 121728.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rizvi I, Gurkan UA, Tasoglu S, Alagic N, Celli JP, Mensah LB, Mai Z, Demirci U, Hasan T. Movement induces epithelial-mesenchymal transition, mobile heterogeneity and biomarker modulation in 3D ovarian most cancers nodules. Proc Natl Acad Sci USA. 2013;110:E1974–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandghanooni S, Sanaat Z, Barar J, Adibkia Ok, Eskandani M, Omidi Y. Latest advances in aptamer-based nanosystems and microfluidics gadgets for the detection of ovarian most cancers biomarkers. Traits Analyt Chem. 2021;143: 116343.

    Article 
    CAS 

    Google Scholar
     

  • Zhang P, Zhou X, He M, Shang Y, Tetlow AL, Godwin AK, Zeng Y. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat Biomed Eng. 2019;3:438–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Z, Yang Y, Zeng Y, He M. A microfluidic ExoSearch chip for multiplexed exosome detection in the direction of blood-based ovarian most cancers analysis. Lab Chip. 2016;16:489–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dorayappan KDP, Gardner ML, Hisey CL, Zingarelli RA, Smith BQ, Lightfoot MDS, Gogna R, Flannery MM, Hays J, Hansford DJ, et al. A microfluidic chip allows isolation of exosomes and institution of their protein profiles and related signaling pathways in ovarian most cancers. Most cancers Res. 2019;79:3503–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang C-H, Weng C-H, Che Y-J, Wang Ok, Lee G-B. Most cancers cell-specific oligopeptides chosen by an built-in microfluidic system from a phage show library for ovarian most cancers analysis. Theranostics. 2015;5:431–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung YD, Liu TH, Liang YL, Lin CN, Hsu KF, Lee GB. An built-in microfluidic platform for detection of ovarian clear cell carcinoma mRNA biomarker FXYD2. Lab Chip. 2021;21:2625–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamilton CA, Pothuri B, Arend RC, Backes FJ, Gehrig PA, Soliman PT, Thompson JS, City RR, Burke WM. Endometrial most cancers: a society of gynecologic oncology evidence-based evaluate and suggestions. Gynecol Oncol. 2021;160:817–26.

    Article 
    PubMed 

    Google Scholar
     

  • Johnson N, Bryant A, Miles T, Hogberg T, Cornes P. Adjuvant chemotherapy for endometrial most cancers after hysterectomy. Cochrane Knowledge Sys Rev. 2011. https://doi.org/10.1002/14651858.CD003175.pub2.

    Article 

    Google Scholar
     

  • Chitcholtan Ok, Asselin E, Father or mother S, Sykes PH, Evans JJ. Variations in progress properties of endometrial most cancers in three dimensional (3D) tradition and 2D cell monolayer. Exp Cell Res. 2013;319:75–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Y-L, Li J-Q, Sulaiman Z, Liu Q, Wang C-Y, Liu S-P, Gao Z-L, Cheng Z-P. Optimization of endometrial most cancers organoids institution by cancer-associated fibroblasts. Neoplasma. 2022;69:877.

    Article 
    PubMed 

    Google Scholar
     

  • Boretto M, Maenhoudt N, Luo X, Hennes A, Boeckx B, Bui B, Heremans R, Perneel L, Kobayashi H, Van Zundert I, et al. Affected person-derived organoids from endometrial illness seize scientific heterogeneity and are amenable to drug screening. Nat Cell Biol. 2019;21:1041–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhatla N, Aoki D, Sharma DN, Sankaranarayanan R. Most cancers of the cervix uteri: 2021 replace. Int J Gynaecol Obstet. 2021;155(Suppl 1):28–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kokka F, Bryant A, Brockbank E, Powell M, Oram D. Hysterectomy with radiotherapy or chemotherapy or each for girls with domestically superior cervical most cancers. Cochrane Database Syst Rev. 2015. https://doi.org/10.1002/14651858.CD010260.pub2.

    Article 
    PubMed 

    Google Scholar
     

  • Johnson CA, James D, Marzan A, Armaos M. Cervical most cancers: an outline of pathophysiology and administration. Semin Oncol Nurs. 2019;35:166–74.

    Article 
    PubMed 

    Google Scholar
     

  • Tewari KS, Sill MW, Lengthy HJ III, Penson RT, Huang H, Ramondetta LM, Landrum LM, Oaknin A, Reid TJ, Leitao MM, Michael HE. Improved survival with bevacizumab in superior cervical most cancers. New Eng J Med. 2017;377:702–702.

    Article 

    Google Scholar
     

  • Guha P, Heatherton KR, O’Connell KP, Alexander IS, Katz SC. Assessing the way forward for strong tumor immunotherapy. Biomedicines. 2022;10:655.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams M, Jasani B, Fiander A. Human papilloma virus (HPV) prophylactic vaccination: challenges for public well being and implications for screening. Vaccine. 2007;25:3007–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Viti J, Poljak M, Ostrbenk A, Bhatia R, Alcaniz Boada E, Cornall AM, Cuschieri Ok, Garland S, Xu L, Arbyn M. Validation of EUROArray HPV check utilizing the VALGENT framework. J Clin Virol. 2018;108:38–42.

    Article 
    PubMed 

    Google Scholar
     

  • Shah SS, Senapati S, Klacsmann F, Miller DL, Johnson JJ, Chang HC, Stack MS. Present applied sciences and up to date developments for screening of HPV-associated cervical and oropharyngeal cancers. Cancers. 2016;8:85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao X, Li X, Yang W, Peng J, Huang J, Mi S. An built-in microfluidic detection system for the automated and speedy analysis of high-risk human papillomavirus. Analyst. 2021;146:5102–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, Schuebbe G, Renz BW, D’Haese JG, Schloesser H, et al. Advances in most cancers immunotherapy 2019—newest traits. J Exp Clin Most cancers Res. 2019;38:268.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inan H, Wang S, Inci F, Baday M, Zangar R, Kesiraju S, Anderson KS, Cunningham BT, Demirci U. Isolation, detection, and quantification of most cancers biomarkers in HPV-associated malignancies. Sci Rep. 2017;7:3322.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du Z, Colls N, Cheng KH, Vaughn MW, Gollahon L. Microfluidic-based diagnostics for cervical most cancers cells. Biosens Bioelectron. 2006;21:1991–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Howes PD, Chandrawati R, Stevens MM. Colloidal nanoparticles as superior organic sensors. Science. 2014;346:1247390.

    Article 
    PubMed 

    Google Scholar
     

  • Gu Y, Li Z, Ge S, Mao Y, Gu Y, Cao X, Lu D. A microfluidic chip utilizing Au@SiO(2) array-based extremely SERS-active substrates for ultrasensitive detection of twin cervical cancer-related biomarkers. Anal Bioanal Chem. 2022;414:7659–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang N, Wang J, Meng X, Bao Y, Wang S, Li T. 3D microfluidic in vitro mannequin and bioinformatics integration to review the results of Spatholobi Caulis tannin in cervical most cancers. Sci Rep. 2018;8:12285.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adamson GD, de Mouzon J, Chambers GM, Zegers-Hochschild F, Mansour R, Ishihara O, Banker M, Dyer S. Worldwide committee for monitoring assisted reproductive know-how: world report on assisted reproductive know-how, 2011. Fertil Steril. 2018;110:1067–80.

    Article 
    PubMed 

    Google Scholar
     

  • Shanner L, Nisker J. Bioethics for clinicians: 26. Assisted reproductive applied sciences. Can Med Assoc J. 2001;164:1589–94.

    CAS 

    Google Scholar
     

  • Weng L. IVF-on-a-chip: latest advances in microfluidics know-how for in vitro fertilization. SLAS Technol. 2019;24:373–85.

    Article 
    PubMed 

    Google Scholar
     

  • Thapa S, Heo YS. Microfluidic know-how for in vitro fertilization (IVF). JMST Adv. 2019;1:1–11.

    Article 

    Google Scholar
     

  • Kashaninejad N, Shiddiky MJA, Nguyen NT. Advances in microfluidics-based assisted reproductive know-how: from sperm sorter to reproductive system-on-a-chip. Adv Bio. 2018;2:1700197.


    Google Scholar
     

  • Alias AB, Huang H-Y, Yao D-J. A evaluate on microfluidics: an help to assisted reproductive know-how. Molecules. 2021;26:4354.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith GD, Takayama S. Software of microfluidic applied sciences to human assisted copy. Mol Hum Reprod. 2017;23:257–68.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sequeira RC, Criswell T, Atala A, Yoo JJ. Microfluidic methods for assisted reproductive applied sciences: benefits and potential purposes. Tissue Eng Regen Med. 2020;17:787–800.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marzano G, Chiriaco MS, Primiceri E, Dell’Aquila ME, Ramalho-Santos J, Zara V, Ferramosca A, Maruccio G. Sperm choice in assisted copy: a evaluate of established strategies and cutting-edge prospects. Biotechnol Adv. 2020;40: 107498.

    Article 
    PubMed 

    Google Scholar
     

  • Beebe D, Wheeler M, Zeringue H, Walters E, Raty S. Microfluidic know-how for assisted copy. Theriogenology. 2002;57:125–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thorp HH. ChatGPT is enjoyable, however not an creator. Science. 2023;379:313.

    Article 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments